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Abstract

The present short communication shows an exact solution of the Navier–Stokes equations in the case of a channel filled with gas and
with temperature contrast between the boundaries. This exact solution is then compared with the result of a numerical simulation made
using a numerical code widely used in fire safety engineering. It shows the ability of the code to reproduce this highly stratified flow.
Nusselt numbers are then estimated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

There are very few exact solutions of the Navier–Stokes
equations ([1,8]). The real interest of such exact solutions
may be questioned, because they are generally subject to
instabilities, sometimes at a relatively low Reynolds num-
ber. Moreover, they rarely represent a situation with a
practical interest.

However, these exact solutions are useful for making a
comparison with a numerical calculation, thus providing
some insight on the quality of the simulation tool used.

In the present short communication, we first show that
there is an exact solution for gas flows in horizontal chan-
nels (of height h) with vertical density gradients which may
be very high (leading to a non-Boussinesq situation). The
vertical density gradient is created by imposed tempera-
tures on the top and bottom boundaries (see Fig. 1). The
flow is considered far downstream of the inlet (say, at a dis-
tance L from the entrance, with L� h, see Fig. 1), so that
the precise form of the entrance conditions is unimportant
and the gradients in velocity and temperature are purely
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vertical. This situation is rather different from the one stud-
ied in [4], where the flow develops in a gap between two
parallel vertical boundaries, gravity being parallel to the
main direction of the flow and the small mass flow through
each cross section of the gap being small.

In view of the very high density gradients considered, we
focus on flows of an ideal gas. The exact solution is then
compared with the result of a direct numerical simulation
made with a code of widespread use for the assessment of
hot air motion with the application of fire safety.
2. Steady laminar parallel flow

2.1. Channel flow equations for an ideal gas at low Mach

number

The flow of a fluid of variable density in a 2D channel of
height H is considered. The flow is assumed to be parallel
and the streamwise direction is denoted by x. The vertical
direction is denoted by z, so that

u ¼ UðzÞex; q ¼ qðzÞ: ð1Þ

The fluid is assumed to be an ideal gas in the low Mach-
number limit.

For a fluid of variable density, the Navier–Stokes equa-
tions are written as
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Fig. 1. Stratified flow in a horizontal channel, sketch of the flow and
boundary conditions.
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where sij represents the viscous stress and for a Newtonian
fluid is given by

sij ¼ l
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dij ð3Þ

(l is the dynamic viscosity and l0 � l). The energy conser-
vation may be expressed through the enthalpy equation,
which, for an ideal gas, is written as
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where T is the temperature, Cp is the specific heat and j is
the diffusivity of heat.

Following an infinitesimal stream-tube, dP � �qdðu2=
2Þ � qðu2=2Þ, and therefore, since in an ideal gas the sound
celerity is given by c ¼
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where M is the Mach number and � reads ‘of the same
order of magitude’. If M2 � 1, then dP=P � 1. The differ-
ential form of the state equation of an ideal gas in the pres-
ent low Mach number situation is therefore

dq
q
þ dT

T
� 0; ð6Þ

whence

qT ¼ q0T 0 ð7Þ
with q0 the density at a reference temperature T0.

Therefore, the enthalpy equation reduces to
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where Cp has been taken as a constant.

2.2. Exact solution of the equations

For a steady laminar parallel flow, the equations (2)
reduce to
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with the boundary conditions as described in the introduc-
tion and sketched in Fig. 1.

Defining a ¼ � oP
ox, it follows
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Hence, the momentum equation on the x-coordinate
becomes

d

dz
l
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which can be integrated to

l
dU
dz
¼ �azþ s0 ð11Þ

where s0 is the shear stress at z = 0. Note that if a 6¼ 0,
e ¼ s=a is a height at which dU

dz ¼ 0 (0 < e < H exists since
Uð0Þ ¼ UðHÞ ¼ 0). A good approximation for dry air is a
constant Prandtl number Pr ¼ l

qj and specific heat Cp (see
[6], table 5-1-8). Therefore, the heat equation can be inte-
grated to

l
dT
dz
¼ Prq0

Cp
ð12Þ

where q0 is the vertical heat flux at z = 0.
The variation of l with temperature in an ideal gas is

given by the Sutherland formula:

l ¼ lr
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T
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with lr the dynamic viscosity at a given reference tempera-
ture Tr and C a constant. For dry air, C ¼ 123:6 K, and at
T r ¼ 273 K, lr ¼ 17:1� 10�6 Pa.s. Note that the reference
temperature may be chosen arbitrary provided the refer-
ence dynamic viscosity is calculated according to this refer-
ence temperature. It follows that
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Writing Z ¼ z=H , U 0 ¼ sH=l0, ~u ¼ U=U 0, a ¼ aH=s,
h ¼ T=T 0 (where T0 is the bottom boundary temperature),
b ¼ C=T 0, and c ¼ Prq0H

Cpl0T 0ð1þbÞ, it follows
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Fig. 2. Velocity and temperature profiles in a channel filed with dry air,
for a bottom temperature of 20 �C and a top temperature of 1000 �C (the
height of the channel is 0.01 m and the pressure gradient is 0.01 Pa/m; the
resulting Reynolds number is 15). The calculation was performed using
both the solution of Section 2.2 and DNS (see Section 2.3), and the two
solutions superpose exactly on the picture.
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The temperature equation can be rewritten
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Therefore, using
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Meanwhile, the velocity profile can be obtained from

d~u
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with boundary conditions Uð0Þ ¼ 0 and UðHÞ ¼ 0. The
velocity can be computed from

d~u
dh
¼ 1

c
� a

c
� 2b3=2

c
h3=2 � 1

3b3=2
� h1=2 � 1

b1=2

"

þarctan
h1=2

b1=2
� arctan

1

b1=2

#
ð21Þ

with ~uð0Þ ¼ 0 and ~uð1Þ ¼ 0, which gives the condition to
compute a. This equation may be integrated analytically
using special functions. However, since the integrand is
not stiff, it is simpler and very fast to perform the integra-
tion numerically with any method (e.g. Trapezium or
Simpson’s rule) and to tabulate the resulting function. An-
other very simple option is to approximate the integrand
with a polynomial (e.g. Berstein polynomials, as in [3]). A
typical result is given in Fig. 2.
2.3. Comparison with a numerical simulation

The result can be compared with a direct numerical sim-
ulation (DNS). The simulation shown here is achieved with
the code FDS in its DNS configuration (see [5]). The sim-
ulation method used in this code is based on a modified
divergence constraint for the calculation of the pressure
field in a gas with large density differences (see [5,2]) and,
therefore, leads to a good numerical efficiency for low
Mach number flows.

The simulation domain is 1 m long and 0.01 m high,
with 400 cells in the streamwise direction and 20 in the ver-
tical direction. The simulated case is the same as the one of
Fig. 2. The result of the direct numerical simulation is
strictly identical to the result of Fig. 2.
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3. Vertical heat flux

If h1 ¼ T 1=T 0 is the non-dimensional temperature of the
top boundary, equation (19) leads to
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Therefore, the heat flux per unit area can be estimated from
knowledge of h1:

q0 ¼ 2b3=2 Cpl0T 0ð1þ bÞ
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If the heat flux is written in an exchange coefficient form

q0 ¼ hðT 1 � T 0Þ; ð24Þ
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Fig. 3. Nusselt number as a function of h1, for dry air (bottom boundary
temperature 20�).
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one finds

h ¼ 2b3=2 Cpl0ð1þ bÞ
PrHðh1 � 1Þ

h3=2
1 � 1

3b3=2
� h1=2

1 � 1

b1=2

"

þ arctan
h1=2

1

b1=2
� arctan

1

b1=2

#
: ð25Þ

Defining the Nusselt number for the present case as

Nu ¼ hH
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the above theory leads to
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Fig. 3 shows the value of the Nusselt number for dry air.

4. Case of a Boussinesq flow

Here, it is assumed that temperature differences are
small, so that h ¼ 1þ h0 and h0 � 1. Equations (19) and
(21) can be developed to first order, leading to

Z ¼ h0

h01
and ~u ¼ Z � Z2 ð28Þ

therefore the velocity profile is exactly a Poiseuille isother-
mal profile. The thermal stratification has no effect on the
velocity field. The exchange coefficient in the Boussinesq
case reduces to
hB ¼
Cpl0

PrH
; ð29Þ

corresponding to the Nusselt number Nu = 1, as expected.

5. Conclusion

The laminar flow of hot gas in a horizontal channel was
considered. It was shown that there exists an exact solution
of the Navier–Stokes equations in this case. This solution
was compared with a direct simulation using the code
FDS, leading to exactly the same result. This shows that
the simulation method used in this code, based on a mod-
ified divergence constraint for the calculation of the pres-
sure field in gas with large density differences (see [5,2]),
is suitable for such a calculation.

The Nusselt number as a function of temperature ratio
was calculated.

The solution proposed in this note is an exact solution in
the sense that it may be computed in terms of specials func-
tions or from a simple integration of a non-stiff integral. It
is given in the form z ¼ zðT Þ, U ¼ UðT Þ, which may be
seen, as argued by [4], to be useless for a stability analysis.
However, as explained above, the physical situation is in
the present case different from the one studied by [4], and
the equation z ¼ zðT Þ forms a very good and smooth diffe-
omorphism, which may be inverted very simply. As a con-
sequence, it is a better starting point for a stability analysis
than a DNS. It must be also be noted that a stability anal-
ysis in the present case is mostly interesting in the stable
case, when the hot boundary is the top one, creating grav-
ity waves in the flow. This will be a subject of further inves-
tigation (in particular to detect preferential wavelength).

It is of interest also to note that the velocity maximum is
in the low temperature zone. On the other hand, when a
gravity current of hot gas is propagating underneath a ceil-
ing, it is well known that the velocity maximum is in the hot
layer (see [7]). Even though it is clear that a gravity current
is unsteady, it could be expected that the steady flow is sim-
ply a long time limit of the gravity current flow. This point
should be investigated in future work.
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